
JTATION PAGE . 07,141

F!AD-A226 898 13WpI

4L TITL.EAND MSTITLE Ada Compiler Validation Summary Report: Proprie-. UDN IMR

tary Software Systems, Inc., PS5 VAX.1750A Ada Compiler, VAX
8350 (Host) to MIL-STD-1750A/PSS AdaRAID (Target),
89121811.10259

6.AUTHOA(S)
IABG-AVF
Ottobrunn, FEDERAL REPUBLIC OF GERMANY

7. PERVJIG CAG0ANIZATION MANE(S) AM AWOSEMS) S. PE OJ GAWIATION
IABG-AVF, Industrieanlagen-Betriebsgeselschaft EPORTMR

Dept. SZT AFIB-4
Einsteinstrasse 20 AFIB-4

D-8012 Ottobrunn
FEDERAL REPUBLIC OF*GERMANY __________

9. UPCNSWOAN INt1 G AGENCY MAWS(S) ANDADOAESS(ES) 10... SIAUCHfl.IG- N 7- If AGENCY

Ada Joint Program Office PORT NUMBE R

United States Department of Defense
!Uashington, D.C. 20301-3081

11. MWLEISENTARY NOTES

12a. OIRJT1MAVAABIfLY STATENIENT Ma. OISTRUSIrfl CODE

Approved for public release; distribution unlimited.

Proprietary Software Systems, Inc., P55 VAX/1750A Ada Compiler, Ottobrunn, West Germany,

* VAX 8350 under VMS Version 5.1 (Host) to MIL-STD-1750A/PSS AdaRAID Version MD-08.011
(Bare Machine Simulation under VAX/VMS Version 5.1)(Target), ACVC 1.10.

'. SEP 25 111#

LU C

S14.ULS111ECTTEMU Ada programming language, Ada Compiler Validation tI. NMER OF MXES

2"' Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- OSRRcCC
S7D -18 SA, Ada Joint Program Office

17. WCURrlY CLASWATIO4 '14. SECURITY CLASSFCATO U1CAU4I.rN 2.FM~r'TWO W C
OFU~T REPORT~r OF THI OAN AISNSTA

UNLSIIDUNCLASSIFIED UNCLASSIFIED
NSN 754".1-U040M0aMP""W W .r

A)A OfA O AL2X

AVF Control Number: AVF-IABG-046

Ada COMPILER
VALIDATION SUMMARY REPORT

Certificate Number: #89121811.10259
Proprietary Software Systems, Inc.

PSS VAX/1750A Ada Compiler
VAX 8350 to MIL-STD-175OA/PSS AdaRAID

Completion of Testing:
18th December 1989

Prepared By:
IABG mbH, Abt SZT-
Einsteinstr 20
D8012 Ottobrunn *..

West Germany

Prepared For:
Ada Joint Program Office **-~---~--

United States Department of Defense
Washington DC 20301-3081A

Dist

Ada Compiler Validation Summary Report:

Compiler Name: PSS VAX/1750 Ada Compiler, Version TX-01.000

Certificate Number: #89121811.10259

Host: VAX 8350 under VMS Version 5.1

Target: MIL-STD-1750A/PSS AdaRAID Version MD-08.011

(Bare Machine Simulation under VAX/VMS Version 5.1)

Testing Completed 18th December 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Dr. S. Heilbrunner
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
Vest Germany

Ada Validation Organization
. Dr. John F.Ar er

Institute for-Defense Analyses
Alexandria VA 22311

4 Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 3
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2 CONFIGURATION INFORMATION 7

2.1 CONFIGURATION TESTED 7
2.2 IMPLEMENTATION CHARACTERISTICS 8

CHAPTER 3 TEST INFORMATION 13

3.1 TEST RESULTS13
3.2 SUMMARY OF TEST RESULTS BY CLASS 13
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 14
3.4 WITHDRAWN TESTS14
3.5 INAPPLICABLE TESTS 14
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 18
3.7 ADDITIONAL TESTING INFORMATION 19
3.7.1 Prevalidation19
3.7.2 Test Method19
3.7.3 Test Site20

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX D COMPILER AND LINKER OPTIONS

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of.--esting this compiler using the Ada Compiler
Validation Capability ((ACVC) '--.An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

KThe information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

INTRODUCTION

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-depedent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG mbH, Abt SZT according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 18th
December 1989 at IABG mbH, Ottobrunn.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

2

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF. practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic Prror in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the. compiler.

(4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the

'compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK-FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

5

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

TABLE OF CONTENTS

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: PSS VAX/1750A Ada Compiler, Version TX-01.000

ACVC Version: 1.10

Certificate Number: #89121811.10259

Host Computer:

Machine: VAX 8350

Operating System: VMS Version 5.1

Memory Site: 12 Megabytes

Target Computer:

Machine: MIL-STD-1750A/PSS AdaRAID

Operating System: Bare Machine Simulation
under VAX/VMS Version 5.1

Memory Size: 64 Kilobytes

7

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit imnlementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

3) The compiler correctly processes tests cuntaining block
statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 5 levels
but not to 10 or 17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORT-INTEGER, LONGFLOAT and LONG-INTEGER in the package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which ixpressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions for record
components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

8

CONFIGURATION INFORMATION

3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test C35903A.)

4) NUMERICERROR is raised for largest integer and no exception
is raised for predefined and smallest integer when an
integer literal operand in a comparison or membership test is
outside the range of the base type. (See test C45232A.)

5) No exception is raised when a literal operand in a fixed-
point comparison or membership test is outside the range of
the base type. (See test C45252A.)

6) Underflow is not gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A;.Z (26 tests).)

3) The method used for'rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises NUMERIC-ERROR for
one. dimensional array and two dimensional array types and no
exception for one dimensional array and two dimensional array
subtypes. (See test C36003A.)

2) NUMERIC ERROR is raised when an array type with
INTEGER'LAST + 2 components is declared. (See test
C36202A.)

9

CONFIGURATION INFORMATION

3) NUMERICERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See
test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared and exceeds INTEGER'LAST. (See test
C52104Y.)

6) In assigning one-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an implemen-
tation may accept the declaration. However, lengths must
match in array slice assignments. This implementation raises
NUMERICERROR when the array type is declared. (See
test E52I03Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT-ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

10

CONFIGURATION INFORMATION

3) CONSTRAINTERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is supported for functions and procedures
but not when applied across compilation units. (See tests
LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F
(2 tests).)

i. Generics.

This compiler enforces the following two rules concerning
declarations and proper bodies which are individual compilation
units:

o generic bodies must be compiled and completed before their
instantiation.

o recompilation of a generic body or any of its transitive
subunits makes all units obsolete which instantiate that
generic body.

These rules are enforced whether the compilation units are in
separate compilation files or not. A1408 and A1506 allow this
behaviour.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CAIOl2A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1OI2A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3O1IA.)

11

CONFIGURATION INFORMATION

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3O11A.)

j. Input and output.

1) The package SEQUENTIALIO can be instantiated with
unconstrained array types or record types with
discriminants without defaults. However, this implementation
raises USE-ERROR upon creation of a file for unconstrained
array types. (See tests AE2101C, EE2201D, and EE2201E.)

2) The package DIRECTIO can be instantiated with unconstrained
array types or record types with discriminants without
defaults. However, this implementation raises USE-ERROR upon
creation of a file for unconstrained array types. (See tests
AE21O1H, EE2401D, and EE2401G.)

3) The director, AJPO, has determined (AI-00332) that every call
to OPEN and CREATE must raise USE-ERROR or NAME-ERROR if file
input/output is not supported. This implementation exhibits
this behaviour for SEQUENTIAL_IO, DIRECT_10, and TEXTIO.

12

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 670 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
285 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 85 tests were required to successfully demon-
strate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS
RESULT TEST CLASS TOTAL

A B C D E L

Passed 129 1134 1667 15 14 44 3003

Inapplicable 0 4 648 2 14 2 670

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

13

TEST INFOR'-ATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER
RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 192 547 507 248 170 99 161 332 127 36 252 256 76 3003

N/A 20 102 173 0 2 0 5 0 10 0 0 113 245 670

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of featlires
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 670 tests were inapplicable for
the reasons indicated:

a. The following 285 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)

TEST INFORMATIO

C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F. .Z (21 tests) C45621F. .Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they require a value of MAXMANTISSA greater than 32.

f64005F and D64005G are not applicable because these tests have
excessive memory requirements which cause STORAGEERROR to be
raised: D64005F during execution; D64005G during elaboration of
library units.

C86001F is not applicable because, for this implementation, the
package TEXTIO is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXTIO, and
hence package REPORT, obsolete.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG-INTEGER, or SHORTINTEGER.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORTJLOAT.

CA2009A, CA2009C, CA2009F and CA2009D are not applicable because
this compiler creates dependancies between generic bodies, and
units that instantiate them (see section 2.2i for rules and
restrictions concerning generics).

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE when applied across compilation units (See Appendix F of
the Ada Standard in Appendix B of this report, and Section 2.2.h
(1)).

CD1009C, CD2A41A..E (5 tests) and CD2A42A..J (10 tests) are not
applicable because this implementation imposes restrictions on
'SIZE length clauses for floating point types.

CD2A61E, CD2A61G and CD2A61I are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
array types.

CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable

15

because this implementation imposes restrictions on 'SIZE length
clauses for access types.

CD2A91A..E (5 tests) are not applicable because 'SIZE length
clauses for task types are not supported.

CD2B1G is not applicable because 'STORAGE SIZE representation
clauses are not supported for access types where the designated
type is a task type.

CD2B15B is not applicable because a collection size larger than
the size specified was allocated.

The following 76 tests are not applicable because, for this
implementation, address clauses are not implemented:

CD5003B..I (8 tests) CD5011A CD5011B CD5011C
CD5011D CD5001E CD5011F CD5011G CD5011H
CD5011I CD5011K CD5011L CD5011M CD5011N
CD5011Q CD5011R CD5011S CD5012A CD5012B
CD5012C CD5012D CD5012E CD5012F CD5012G
CD50123 CD50121 CD5012J CD5012L CD5012M
CD5013A CD5013B CD5013C CD5013D CD5013E
CD5013F CD5013G CD5013H CD5013I CD5013K
CD5013L CD5013M CD5013N CD50130 CD5013R
CD5013S CD5014A CD5014B CD5014C CD5014D
CD5014E CD5014F CD5014G CD5014H CD50141
CD5014J CD5014K CD5014L CD5014M CD5014N
CD50140 CD5014R CD5014S CD5014T CD5014U
CD5014V CD5014W CD5014X CD5014Y CD5014Z

The following 238 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L
CE21O8A..B (2 tests) CE21O8C..H (6 tests)
CE2109A..C (3 tests) CE2110A..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A
CE2208B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE31O2A..B (2 tests) EE3102C

16

~Iv~rJIN7A"AL.LV"

CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A
CE3208A EE3301B
CE3302A CE3305A
CE3402A EE3402B
CE3402C..D (2 tests) CE3403A..C (3 tests)

CE3403E..F (2 tests) CE3404B..D (3 tests)

CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)

CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)

EE3409F CE3410A
CE3410C..E (3 tests) EE3410F
CE3411A CE3411C
CE3412A EE3412C
CE3413A CE3413C
CE3602A..D (4 tests) CE3603A
CE3604A..B (2 tests) CE3605A..E (5 tests)

CE3606A..B (2 tests) CE3704A..F (6 tests)
CE3704M..O (3 tests) CE3706D
CE3706F..G (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests)
CE3806D..E (2 tests) CE3806G..H (2 tests)

CE3905A..C (3 tests) CE3905L
CE3906A..C (3 tests) CE3906E..F (2 tests)

These tests were not processed because their inapplicability can

be deduced from the result of other tests.

Tests CE21O3A, CE2103B and CE3107A raise USE-ERROR upon create for

Sequential, Direct and Text 10.

Tests EE22O1D, EE2201E, EE2401D and EE2401G raise USEERROR upon

create.

17

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 85 tests.

a. The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002B B32201A B34005N
B34005T B34007H B3570lA B36171A B36201A B37101A
B37102A B37201A B37202A B37203A B37302A B38003A
B38003B B38008A B38008B B38009A B38009B B38103A
B38103B B38103C B38103D B38103E B41202A B43202C
B44002A B48002A B48002B B48002D B48002E B48002G
B48003E B49003A B49005A B49006A B49007A B49009A
B4AO1OC B54A20A B54A25A B58002A B58002B B59001A
B59001C B590011 B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B85007C B91005A B95003A
B95007B B95031A B95032A B95074E BC1002A BC1lO9A
BC1109C BC1202E BC1206A BC2001E BC3005B BC3009C
BD5005B

b. For the two tests BC3204C and BC3205D, the compilation order was
changed to

BC3204C0, C1, C2, C3M, C4, CS, C6, C3M
and

BC3205DO, D2, DIM

respectively. This change was necessary because of the compiler's
rules for separately compiled generic units (see section 2.2i for
rules and restrictions concerning generics). When processed in
this order the expected error messages were produced for BC3204C3M
and BC3205D1M.

c The two tests BC3204D and BC3205C consist of several compilation
units each. The compilation units for the main procedures are
near the beginning of the files. When processing these files
unchanged, a link error is reported instead of the expected
compilation of the generic units. Therefore, the compilation

i:

TEST INFORMATION

files were modified by appending copies of the main procedures to
the end of these files. When processed, the expected error
messages were generated by the compiler.

d. Tests C39005A, CD7004C, CD7005E and CD7006E wrongly presume an
order of elaboration of the library unit bodies. These tests were
modified to include a PRAGMA ELABORATE (REPORT);

e. Test E28002B checks that predefined or unrecognized pragmas may
have arguments involving overloaded identifiers without enough
contextual imformation to resolve the overloading. It also checks
the correct processing of pragma LIST. For this implementation,
pragma LIST is only recognised if the compilation file is compiled
without errors or warnings. Hence, the test was modified to
demonstrate the correct processing of pragma LIST.

f. Test CDlC04E checks that a derived type can have a different
physical representation than its parent type. The component
specifications in the test use 'size clauses that cause word
boundaries to be crossed. Since this implementation does not
allow a component to cross a word boundary, this test generates a
compile time error message. Therefore, the expressions
character'size and boolean'size were changed to character'size/2
and boolean'size/2 so that components stay within a word.

g. Tests C45524A and C45524B contain a check at line 136 that may
legitimately fail as repeated division may produce a quotient that
lies within the smallest safe interval. This check was modified
to include, after line 138, the text:

ELSIF VAL <= F'SAFESMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

For this implementation, the required support package specification,

SPPRT13SP, was rewritten to provide constant values for the function names.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the PSS VAX/1750A Ada Compiler, Version TX-01.000 was submitted to the
AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the PSS VAX/1750A Ada Compiler, Version TX-01.000 using ACVC
Version 1.10 was conducted by IABG on the premises of IABG. The
configuration in which the testing was performed is described by the

TEST IUIFORNATION

following designations of hardware and software components:

Host computer: VAX 8350
Host operating system: VMS Version 5.1
Target computer: MIL-STD-1750A/PSS AdaRAID
Target operating system: Bare Machine Simulation

under VAX/VMS Version 5.1
Compiler: PSS VAX/1750A Ada Compiler,

Version TX-0.000

The original ACVC distribution tape was loaded to the host machine, where
it was customized to remove all withdrawn tests and tests requiring unsup-
ported floating point precisions. Tests that make use of implementation
specific values were also customized. Tests requiring modifications during
the prevalidation testing were modified accordingly.

After the test files were loaded to disk, the full set of tests was
compiled linked, and all executable tests were run on the
MIL-STD-1750A/PSS AdaRAID Version MD-08.011 Simulator. Results were
evaluated and printed on the host machine.

The compiler was tested using command scripts provided by Proprietary
Software Systems and reviewed by the validation team. The compiler was
tested using no option qualifiers. All chapter B tests were compiled with
the /LIST=S qualifier.

Tests were compiled using the command

MADA (test name>

This implementation has no linker options. Tests were linked using the
command

MALIB <test name>

A full list of compiler options is given in Appendix E.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at IABG mbH, Ottobrunn and was completed on 18th
December 1989.

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Proprietary Software Systems has submitted the following
Declaration of Conformance concerning the PSS VAX/1750A Ada
Compiler, Version TX-01.000.

PROPRIETARY SOFTWARE SYSTEMS

DECLARATION OF CONFORMANCE
L003-0127

Customer: PSS, Inc.

Ada Validation Facility: IABG mbH

ACVC Version: 1.10

Ada Implementation

Ada Compiler Name: PSS VAX/1751A Ada Compiler

Version: TX-01.000

Host Computer System: VAX 8350/VMS 5.1

Target Computer System: MIL-STD-1750A/PSS AdaRAID Version
MD-08.011 (bare machine simulation
under VAX/VMS Version 5.1)

Customer's Declaration

I, the undersigned, representing PSS, Inc., declare that PSS, Inc.,
has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration.

16 January 1990
naturei Date

President
PSS, Inc.

429 Santa Monica Blvd. e Suite 430 e Santa Monica, California 90401 * (213) 394-5233 * FAX (21 1) 393 22

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation depend-ncies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the PSS VAX/1750A Ada
Compiler, Version TX-01.000, as described in this Appendix, are
provided by Proprietary Software Systems. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific
portions of the package STANDARD are given below.

package STANDARD is

type SHORTINTEGER is range -128..127;
type INTEGER is range -32768..32767;
type LONG-INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range
-16#0.7FFFFF#E+32 .. 16#0.7FFFFF#E+32;

type LONGFLOAT is digits 9 range
-16#0.7FFFFFFFFFFF_.FF#E+32
16#0.7FFFFFFFFFFFFF#E+32;

type DURATION is delta 0.0001 range -86400.0..86400.0;

end STANDARD;

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

MIL-STD-1815A APPENDIX F

This section discusses how the PSS Ada Compiler handles ML-
STD-1815A issues that are left up to the implementor. Terms
that may be unfamiliar are given in the Glossary at the end of
this manual.

Supported Pragmas The PSS Ada Compiler supports the following pragmas:

ELABORATE This pragma controls elaboration order. It specifies that the
named library unit must be elaborated before the following
compilation unit. The pragma is allowed only immediately after
the context clause of a compilation unit (before the subsequent
library unit or secondary unit). Each argument to the pragma
must be the simple name of a library unit mentioned by the
context clause.

An elaboration order that meets the rules of Ada may not
satisfy the needs of some applications. In such cases, the user
will specify the elaboration order via the pragma ELABORATE.
In particular, a statement such as

PRAGMA ELABORATE (INITIALIZE);

may be used to cause an initialization package or procedure to
be elaborated before all other units.

PRIORITY This pragma specifies the priority of a task or the priority of a
main program. It specifies the priority as a static expression of
the predefined integer subtype PRIORITY which has a range
of 10 to 200. The pragma is allowed within the specification of
a task unit or immediately within the outermost declarative part
of a main program.

Priority affects the order of task execution. The scheduler
selects the task with the highest priority for execution. New
tasks that are ready to execute are placed in a priority-ordered
queue with tasks of equal priority being placed in time-arrival
order within the same priority level. The following statement
in a task sets its priority to 64.

-48-
DTX-3000

MIL-STD-1815A APPENDIX F

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. I November 1989

PRAGMA PRIORITY (10);

The scheduler will select another waiting task to start execution
if the executing task becomes blocked or when a higher priority
task becomes ready. In other words, a higher priority task will
preempt a lower priority task. All tasks which do not have a
specified priority have a default priority of 10.

UNKAGE NAME This pragma effects a link-time binding between an Ada entity
and an externally meaningful name. The format is:

PRAGMA LINKAGENAME (Ada-simple-name,
string-constant);

where the Ada-simple-name is the name of a subprogram,
exception, or object. The Ada-simple-name must be declared
in a package specification and the pragma must appear in the
same package specification, after the declaration. The string-
constant is a name that is not defined within a compilation unit
in the user's library, but rather is an external name to be
supplied to the link editor.

The effect of pragma LINKAGE NAME is to provide a
specified external name for an Adi entity, allowing the PSS
Memory Allocation Processor to associate the entity with a
symbol (string-constant) that is known to the PS Memory
Allocation Processor but not to the user's library units. The PSS
Ada Compiler will not check the string-constant supplied by the
user as the external name; it is the user's responsibility to ensure
that the string-constant is acceptable to the PSS Memory
Allocation Processor and meaningful to the program.

FOREIGN BODY This pragma informs the PSS Ada Compiler that the body of
a package, including all subprograms, objects, and exceptions,
is implemented in an externally compiled or assembled module.
The external module may be written in Ada (and compiled into
another library) or in another language.

-49-
DTX-3000

MIL-STD-1815A APPENDIX F

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1969

The package containing pragma FOREIGN BODY must be a
non-generic top-level package specification. It may contain only
the following: subprogram declarations, object declarations,
number declarations, and pragmas. Object declarations must
use an unconstrained type mark th.t is not a task type, and
cannot use an initial value expression. The foreign body itself
is responsible for initialization of all objects declared in the
package, including objects that are normally initialized implicitly
(such as access types and certain record types, as described in
[LRM 3.2.1]). The FOREIGN BODY pragma must appear
before any declarations. The format is:

PRAGMA FOREIGN-BODY (languagename,
elaboration routine name);

where language name could be any language that conforms to
the PSS Memory Allocation Processor object module format.
The PSS JOVIAL compiler or 1750A Macro Assembler object
modules may be used in this manner. The language name
informs the PSS Ada Compiler which subroutine linkage ;ill be
used by the foreign module. The foreign module may include
a routine for initialization, which is identified by the optional
parameter elaboration routine name. It is the user's
responsibility to ensure that -foreign modules use data
representations, calling conventions, and (optionally)
initialization routines that are compatible with the PSS Ada
Compiler and with the Ada language itself.

When using pragma FOREIGN BODY, the user should include
a LINKAGE NAME pragma for each declaration in the
package, incluLing declarations in nested package specifications.
This will give the user positive control over external names used
by the foreign module and ensure that no naming conflicts occur
at link time.

Appendix E gives a complete example of a program that uses
the pragmas LINKAGE-NAME and FOREIGN-BODY.

Unsupported Pragmas The other predefined pragmas in the language currently have
no effect. However the same functionality is provided for some
pragmas by other means. These pragmas are the following:.

-50-
DTX-300

MIL-STD-1815A APPENDIX F

PSS ADA COMPILER USER'S GUIDE
PSS. In. 1 November 1969

CONTROLLED There is no automatic storage deallocation of access collections.
If you want to deallocate storage, use
UNCHECKED DEALLOCATION, a standard generic function
for deallocation.

INUNE The INJNE pragma is not supported in this version. It will be
supported in subsequent versions.

INTERFACE Instead of the INTERFACE pragma, the PSS Ada Compiler
uses the combination of the LINKAGE NAME and
FOREIGN-BODY pragmas that are implementation defined.

LIST The LIST option is used to control listings rather than the LIST
pragma.

MEMORY SIZE The MEMORY-SIZE pragma is not supported for the 1750A
target.

OPTIMIZE The OPTIMIZE option is used to control optimization rather
than the OPTIMIZE pragma.

PACK The PACK pragma is not supported. The optimizer decides on
the most efficient form of packing. You can achieve the effect
of the PACK pragma with representation specifications.

PAGE To provide a new page, include a form-feed character in the
source code file.

SHARED The SHARED pragma is not supported for the 1750A target.

STORAGE UNIT The STORAGE UNIT pragma is not supported for the 1750A
target.

SUPPRESS The SUPPRESS option is used to control suppression of
exceptions rather than the SUPPRESS pragma.

SYSTEM NAME The SYSTEM NAME pragma is not supported for the 1750A
target.

-51-

DTX-3000
MIL-STD-1815A APPENDIX F

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

Attributes Aside from restrictions on certain representation specifications
(see the Restrictions section that follows), the PSS Ada
Compiler supports no implementation-dependent attributes.

Package "SYSTEM" The predefined package called SYSTEM contains the definitions
of certain implementation dependent characteristics. In
accordance with Section 13.7 of the Ada Language Referwnce
Manual, the package is defined as follows:

package SYSTEM is
-Required defnitions:

type ADDRESS is new integer,
type NAME is (MIL STD_1750A);
SYSTEM NAME : constant NAME : = MILSTD_1750A;
STORAGM UNIT: constant = 16;
MEMORY SIZE : constant : = 65536;
MIN INT : constant := -2"31; - -2,147,483,648
MAX INT constant := 2"31-1; - 2,147,483,647
MAX-DIGITS : constant :- 9;
MAX-MANTISSA : constant :- 31;
FINE-DELTA : constant := 2#1.0#e-31;
TICK- : constant := 0.0001;
subtype PRIORITY is INTEGER range 10..200,

end SYSTEM;

Restrictions Representation clauses are used to map Ada types onto the
target machine. The PSS Ada Compiler implements all
representation clauses defined in Chapter 13 of the LRM,
including length clauses [LRM 13.2], enumeration representation
clauses [LRM 13.3], record representation clauses [LRM 13.4],
and address clauses [LRM 13.5], with the following restrictions:

" Length clauses for size specifications (TSIZE) are restricted
to types and subtypes whose sizes are known at compile time.

" Length clauses cannot be used for composite types to force
a smaller size on components than is established by length
clauses for the component types or by the default types of
the components.

-52-
DTX-3000

MIL-STD-1815A APPENDIX F

PSS ADA COMPILER USER'S GUIDEPSS, Inc. 1 November 1989

Length clauses for the attributes TSTORAGE SIZE and
TSMALL are restricted only as specified in the [ERM 13.2].
Note that the PSS Ada Compiler will include a small amount
of extra storage for administrative purposes in storage sizes
for tasks and access types.

* For enumeration representation clauses, the integer codes
given in the aggregate must be in the range
INTEGER'FIRST.[NTEGER'LAST.

" Record representation clauses may be used only on types
whose components' sizes are known at compile time.

* Record representation clauses may not force components to
cross word boundaries.

" If representation clauses are given for some (but not all)
components of a record, the PSS Ada Compiler will allocate
the unspecified components in its normal manner.

* Address clauses are permitted only for objects declared in
a top-level library package or in a task.

" Address clauses are not permitted for local packages.

* Each address clause used for an entry will result in a call to
a runtime support routine to effect the binding of the entry
to an interrupt.

* The PSS Ada Compiler represents integer and fixed point
types and subtypes in 1750A native form; that is, as two's
complement numbers. As a consequence, it is an error to
specify a length clause of 1 bit for the integer range 100..101.
Even though 1 bit is sufficient to represent these two values,
the PSS Ada Compiler will allocate 7 bits because 2*06 <
101 < 2**7 and reject a length clause which specifies fewer
than 7 bits for such a range.

.53-
DTX-3000

MIL-STD-1815A APPENDIX F

w

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

Component Names The PSS Ada Compiler generates implementation-dependent
components for arrays with bounds dependent on record
discriminants. These names, which are used for book-keeping
by the PSS Ada Compiler cannot be accessed by the user.

Address Clauses Ada semantics of address clauses allow for the association of
numbered interrupts with task entries. The PSS Ada Compiler
implements this association by interpreting the simple expression
in the clause as the vector number of a 1750A exception or
interrupt.

Unchecked Conversions The generic function UNCHECKED CONVERSION can be
instantiated to effect an unchecked type conversion. The only
restriction imposed by the PSS Ada Compiler is that the sizes
of the source and target types must be known at compile time.
Unchecked conversions between types of unequal sizes will
result in truncation or zero-padding, as appropriate.
Unconstrained arrays and unconstrained record types without
defaulted discriminants are not allowed as target types of
unchecked conversions.

Input/Output Packages Predefined packages for input and output are provided with the
PSS Ada Compiler. These packages include SEQJENTIAL 1O,
DIRECT 10, TEXT 10, 10 EXCEPTIONS, and
LOW LEVEL 10, as described in-Chapter 14 of the Ada
Langtage Reference Manual. Use of the packages for
SEQUENTIAL 1O and DIRECT 10 raise USE ERROR for
the MIL-STD-f750A computer sIce neither sequential nor
direct access files are available on these computers.

Additional Information

Generics The PSS Ada Compiler allows a generic declaration to be
compiled separately from its corresponding proper body. It also
permits separate compilation of subunits of a generic unit [LRM
10.3]. The PSS Ada Compiler enforces the requirement that a
generic body must be compiled prior to an instantiation of the
generic unit. When recompiling the body of a generic unit, the
PSS Ada Librarian will mark as obsolete all units that
instantiated the generic.

-54-
DTX-3000

MIL-STD-1815A APPENDIX F

PSS ADA COMPILER USER'S GUIDE
PSS, Inc.

Every instantiation of a user-defined generic will result in the
generation of in-line code for the generic unit. Thus, multiple
instantiations of a given generic will produce duplications of
code. Instantiations of the predefined generics
UNCHECKED CONVERSION and
UNCHECKED DEALLOCATION are implemented as calls
to runtime support routines.

Main Programs When linking an Ada program, one of the library units must be
designated as the main program. The main program must be
a subprogram library unit with no parameters [LRM 10.1].

Predefined Types The PSS Ada/1750A Compiler implements in package
STANDARD the following predefined numeric types:

SHORT INTEGER
INTEGER
LONG INTEGER
FLOAT
LONG FLOAT
DURATION

and the following predefined numeric subtypes:
NATURAL
POSITIVE

The attrbutes for each of the types and subtypes predefined in
package STANDARD are given in the following table.

-55-
DTX-3000

MIL-STD-1815A APPENDIX F

PSS ADA COMPILER USER'S GUIDE
PSS, Inc.

Attributes of Predefined Types

TYPE ATTRIBUTE VALUE

SHORT INTEGER FIRST -128
SHORT-INTEGER LAST 127
INTEGER FIRST -32768
INTEGER LAST 32767
NATURAL FIRST 0
NATURAL LAST 32767
POSITIVE FIRST 1
POSITIVE LAST 32767
LONG INTEGER FIRST -2"'31
LONG-INTEGER LAST 2'31-1
FLOAT DIGITS 6
FLOAT MANTISSA 24
FLOAT EMAX 127
FLOAT EPSILON 16#0.1000 00#E4

approximately 29.53674E-07
FLOAT SMALL 16#0.8000 000#E-21

approximately 2.54894E-26
FLOAT LARGE 16#0.FFFFF80#E+21

approximately 1.93428E + 25
FLOAT FIRST -16#0.7FFF FF#E+32

approximately -1.70141E +8
FLOAT LAST 16#0.7FFF FF#E+32

approximately 1.70141E +8
FLOAT SAFE EMAX 127
FLOAT SAFE-SMALL 16#0.1000 000#E-31

approximately 2.93874E-3-9
FLOAT SAFE LARGE 16#0.7FFF FCO#E+32

approximately 1.70141E - "8
FLOAT MACHINE RADIX 2
FLOAT MACHINE-MANTISSA 24
.FLOAT MACHINE-EMAX 127
FLOAT MACHINE-EMIN -127
FLOAT MACHINE-ROUNDS TRUE
FLOAT MACHINE-OVERFLOWS TRUE

-56-
DTX-3000

MIL-STD-1815A APPENDIX F

PSSInc.PSS ADA COMPILER USER'S GUIDE

Attributes of Predefined Types

TYPE ATTREBUTE VALUE

LONG FLOAT DIGITS 9
LONG FLOAT MANTISSA 40
LONG FLOAT EMAX 127
LONG FLOAT EPSILON 16#0.4000 0000 0000 000#E-7

approxiately 9.313=274154E-31 -

LONG-FLOAT SMALL 16#0.8000 0000 0000 000#E-3 1
approximately 2.3509887;'1644T-38

LONG-FLOAT LARGE 16#0.FFFF FFFF 0000 000#E +31
approxmately 2. 12676479f2655E; 37

LONG-FLOAT FIRST -16#0.7FFF FFFF FF#E+32
approxmately -1.70141183Ti6047E5+ 38

LONG-FLOAT LAST 16#0.7FFF FFFF FF#E +32
approximately 1.7014118346047]f+38

LONG FLOAT SAFE EMAX 127
LONG FLOAT SAFE SMALL 16#0.1000 0000 0000 000#E-31

approximately 2.9387358170551P-39 -

LONG-FLOAT SAFE-LARGE 16#0.7FFF FFFF 0000 000#E+32
approximately 1.7014 118338 124E+38

LONG FLOAT MACHINE RADIX 2
LONG FLOAT MACHINE MANTISSA. 40
LONG FLOAT MACHINE EMAX 127
LONG7FLOAT MACHINE EMIN -127
LONG FLOAT MACHINE-ROUNDS TRUE
LONG FLOAT MACHINE OVERFLOWS TRUE

DURATION DELTA 0.0001
DURATION SMALL 0.0001
DURATION FIRST -86400.0
DURATION LAST 86400.0

-57-
DTX-300

MIL-STD-1815A APPENDIX F

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below. The use of the '*' operator signifies a multiplication of the
following character, and the use of the '&' character signifies
concatenation of the preceeding and following strings. The values within
single or double quotation marks are to highlight character or string
values:

Name and Meaning Value

$ACC_SIZE 16
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIGIDI 239 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to SBIGID2 except
for the last character.

$BIG_ID2 239 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to SBIGIDI except
for the last character.

$BIG_ID3 120 * 'A' & '3' & 119 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIGID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning Value

$BIG_ID4 120 * 'A' & '4' & 119 * 'A'

An identifier the size of the
maximum input line length which
is identical to $BIGID3 except
for a character near the middle.

$BIG_INTLIT 237 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIGREALLIT 235 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIGSTRINGI '"' & 120 * 'A' & "t

A string literal which when
catenated with BIG STRING2
yields the image of BIG_IDI.

SBIGSTRING2 off@ & 119 * 'A' & '1' &lef

A string literal which when
catenated to the end of
BIGSTRINrg1 yields the image of
BIGIDI.

SBLANKS 220 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

SCOUNTLAST 32766
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 65536
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 16
An integer literal whose value
is SYSTEM.STORAGEUNIT.

TEST PARAMETERS

Name and Meaning Value

SDEF'ULTSYSNAME MILSTD_1750A
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 20
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT NAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG-FLOAT.

$GREATER THAN DURATION 90_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER..THANDURATIONBASE LAST 33 554433.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH..PRIORITY 200
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNAL FILENAMEI BAD.BAD.BAD
An external file name which
contains invalid characters.

SILLEGALEXTERNAL FILENAME2 ANOTHER.BAD.BAD
An external file name which
is too long.

TEST PARAMETERS

Name and Meaning Value

SINTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

SINTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

SINTEGERLASTPLUS1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -90000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THANDURATIONBASE_FIRST -33_554_433.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 10
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 9
Maximum digits suprorted for
floating-point types.

$MAXINTLEN 240
Maximum input line length
permitted by the implementation.

SMAX_INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

SMAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+1.

TEST PARAMETERS

Name and Meaning Value

$MAXLENINT BASEDLITERAL "2:" & 235 * '0' & "11:"
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

SMAXLENREAL BASEDLITERAL "16:" & 233 * '0' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXIN.LEN long.

$MAXSTRINGLITERAL '"" & 238 * 'A' &.
A string literal of size
MAXINLEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASKSIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME NOSUCHINTEGERTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHORT-INTEGER,
LONG-FLOAT, or LONG-INTEGER.

SNAMELIST MILSTD_1750A
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the repregentation
for SYSTEM.MAXINT.

TEST PARAMETERS

Name and Meaning Value

SNEWMEM SIZE 65536
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
$DEFAULTEMSIZE. If there is
no other value, then use
SDEFAULTMEMSIZE.

$NEW_STORUNIT 16
An integer literal whose value
is a permitted argument for
pragma STORAGE-UNIT, other than
SDEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYS NAME MILSTD_1750A
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

STASKSIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.0001
A real literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OFTHEGUARD results in a call to REPORT.FAILED at one of

lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal .with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

WITHDRAWN TESTS

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D (16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

i. CD2BI5C & CD7205C These tests expect that a 'STORAGE SIZE
length clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2D1lB This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

o. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

WITHDRAWN TESTS

p. CE2107I This test requires that objects of two similar scalar
types be distinguished when read from a file--DATAERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

r. CE3301A This test contains several calls to ENDOFLINE &
ENDOFPAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD-INPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT-ERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

No linker options exist for this implementation. This appendix
contains information of the compiler options used in this
validation.

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 Novembr 1989

The PSS Ada Compiler

The PSS Ada Compiler translates a single source file and places
the results of the compilation (object modules, date and time
stamps, symbol information) in the Ada program library.
Invocation of the PSS Ada Compiler must be from the directory
where the PSS Ada library resides. However, the source file
that is used as input to the PSS Ada Compiler may reside in a
different directory.

Ada Compiler Files The PSS Ada Compiler creates and uses several files during
the course of developing and maintaining Ada programs. Each
of these files has the name of the compilation unit with an
extension indicating the purpose of the file. The PSS Ada
Compiler generates fies with the following extensions:

.BOD Contains the representation of the body of a generic
and the visibility information available to subunits. The
PSS Ada Compiler reads this file when compiling a unit
that instantiates a generic or is a subunit of another unit.

.DI Contains the representation of a unit specification. The
PSS Ada Compiler reads this fie when compiling a unit
that has a "with" clause.

.LIS Contains the listing of the source interspersed with any
error and warning messages produced by the PSS Ada
Compiler.

.MLS Contains the machine language listing of the generated
code.

.OBJ Contains the object code for an Ada unit body.

.SOBJ Contains object code for an Ada unit specification.

The PSS Ada Lbrarian controls all of these files except the
J.LIS.and .MLS files. The user should not use these extensions
for any other purpose, nor should any of these files be deleted
by the user while the corresponding unit is still active in the

-41-
DTX-3000

The PSS Ada Compiler

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

Program Library. To avoid unpredictable and erroneous results,
do not delete, edit, rename or otherwise modify these files via
VMS commands. Instead use the PSS Ada Librarian commands
as described in the PSS Ada Library section to perform
operations on library files.

Several temporary fies are created during compilation. Some
of these files have unique names composed of hexadecimal
numbers concatenated with the extensions listed above. Other
temporary files have extensions .TER, .TEB, .TSB, and .TSE.
Any of these temporary files that appear in the user's directory
as a result of an abnormally terminated compilation (or a system
failure) should be deleted by the user.

Invoking the Compiler The PSS Ada Compiler is an executable program under VMS.
To use the PSS Ada Compiler you give an invocation command
that specifies the name of an Ada source code file. Normally
the PSS Ada Compiler invocation command is available system-
wide. This is done at installation time by the System Manager,
in the same manner that commonly used commands are usually
defined in a VAX development environment. The syntax of the
PSS Ada Compiler invocation command is:

$ ADA1750/qualifler(s) file speciflcation/qualifler(s)

where

/qualifier(s) specifies the compilation options to be used

filespecification specifies the name of the file containing the
Ada source code to be compiled. This may be
any legal VMS file specification, including a
logical name.

The Ada command is not order or column dependent. You
may use spaces between any of the parts of the command and
you may place the qualifiers after the Ada command or after
the file name. Following are examples of equivalent invocation
commands to compile a module named "source fle" with
options to suppress constraint checks and to produce-a machine
code listing:

-42-
DTX-300

The PSS Ada Compiler

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

$ ADA1750/SUPPRESS= CONSTRAINT CHECKS/LIST = MACHINE sourcefMe
$ ADA1750 source e/SUPPRESS = CONSTRAINT CHECKS/LIST= MACHINE

$ ADAX750 source file /SPPRESS= CONSTRAINT CHECKS/LIST= MACHINE

$ ADA1750/SUPPRESS= CONSTRAINT CHECKS source fle/LIST= MACHINE

$ADA17S0 /SUPPRESS = CONSTRAINT-CHECKS sourcefile /UST= MACHINE

You may also omit much of the text in commands. As long
as a command option is unique it can be truncated. For
example, the above commands could be simplified to:

$ ADA1750 /SUP=C/US=M source file

Note that if you use the qualifier ADA for our Ada source file
name, this qualifier may be omitted when entering the source
file name. For example, to compile the source fie
WARN.ADA, one specifies:

$ ADA1750/SUP = C/LIS = M WARN

The PSS Ada Compiler accepts a maximum command string
length of 240 characters. Command strings may continue on
multiple lines by using the continuation character, the hyphen
(-), as the last element on each line that is to be continued.
Command line continuation can be useful when entering a very
long command line, or when placing an Ada compilation
command in a command procedure file.

Compilation Options The PSS Ada Compiler has a variety of options that may be
chosen by using qualifiers in the compiler command line. The
text that follows describes each qualifier in detail. All qualifiers
but the /LINES qualifier make use of the prefix "NO" to effect
the negative form of the option. For example,
/NOCONSTRAINT -ICHECKS suppresses the generation of
constraint checks.

-43-
DTX-3000

The PSS Ada Compiler

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

Some qualifiers are incompatible with certain other qualifiers.
For example, /LINES= 20 is incompatible with /NOLIST. The
PSS Ada Compiler will handle incompatible qualifiers by
accepting the first valid qualifier and ignoring later, inconsistent
qualifiers.

Since the compilation command line is limited to 240 characters,
abbreviation of qualifiers can help fit a compilation command
onto one line. When command length is not a factor, it is better
to spell out the qualifier names in full to yield more readable
commands, particularly in command procedures. However, even
if the command is abbreviated, the full name of the option will
appear in any listings that are generated.

The following table summarizes the PSS Ada Compiler
command qualifiers, including applicable qualifier values,
defaults, and incompatible qualifiers.

ADA Command Une Qualifiers

Qualifer <qualifer values> Default Incompatible
Qualifiers Qualifiers

/<NO>LIST- (SOURCEI ERRORS IASSEMBLYI /LIST-ERRORS /NOLIST when

MACHINE I ALL) /LIST

/TARGET- (IEEE I MILSTD) /TARGET-MIL STD

/<NO>OPTIMIZATION /OPTIMIZATION

/<NO>SUPPRESS- (CONSTRAINT CHECKS , /NOSUPPRESS
STACK CHECKS11

ELABQRATION3CHECXS 11ALL)

-44-

DTX-3000
The PSS Ada Complier

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

The following paragraphs show the positive and negative forms
of each qualifier for the PSS Ada Compiler command. The
default forms are indicated by "(D)".

/LIST=SOURCE
/LIST=ERRORS (D)
/LIST=ASSEMBLY
/LIST=MACHINE
/LIST=ALL

/LIST= SOURCE produces a listing of the source text with line
numbers prefixed to each source line. The list file produced has
the same name as the source file but with a file type of .LIS.

/LIST=ERRORS produces a listing of the source text as
described for /LIST= SOURCE but only in the event that some
error is detected by the PSS Ada Compiler. Since
/LIST= ERRORS is the default condition, a compilation that
has errors will generate a listing, but an error-free compilation
will not generate a listing unless a listing has been specifically
requested.

/LIST= ASSEMBLY produces an assembly language source file
in a format that can be input to the PSS 1750A Macro
Assembler. This listing fie has the same name as the source
fie but with a fie type .MAR. This file is normally not
produced as the PSS code generator automatically generates
machine code without going through an assembler.

/LIST= MACHINE produces a source file of the machine code
generated by the PSS Ada Compiler in a format similar to the
listing output of the PSS 1750A Macro Assembler including both
the generated assembly code and the hexadecimal
representation. The listing file that is produced has the same
name as the source file but with a file type .MLS. Two options
are available with respect to the type of listings that are
produced. The command /TARGET - IEEE will result in the
operation codes that are known as the IEEE standard codes.
The command /TARGET = MIL STD will result in a listing that
presents the MIL-STD-1750A operation codes.

-45-
DTX-3000

The PSS Ada Compiler

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. 1 November 1989

/LIST=ALL is the same as:

/LIST= (SO URCE,ASSEMB LY, MACHINE,ERRORS).

Listing options may be combined. Examples of some listing
options are:

/LIST
/LIST= SOURCE
/LIST= ERRORS
/LIST=MACHINE
/UST= (SOURCE,MACH1NE)
/LIST= (ERRORSASSEMBLY)
/NOLISr

/TARGET= IEEE
/TARGETMLSTD (D)

/TARGET -IEEE will result in listings that use the IEEE
standard mnemonics for operation codes.

/TARGET=MIL STD will result in listings that use the MIL-
STD-1750A mnemonics for operation codes. Note that the
generated machine code is the same whether the target is the
IEEE or the MIL STD option. It is simply a matter of user
preference with respect to listings and assemblers.

/OPTIMIZE (D)
/NOOPTMIZE

/OPTIMIZE causes the PSS Ada Compiler to produce
optimized code. This takes the place of the pragma for
optimization. The PSS Ada Compiler produces code that has
been optimized for both time and space.

-46-
DTX-300

The PSS Ada Compiler

PSS ADA COMPILER USER'S GUIDE
PSS, Inc. I November 1989

/SUPPRESS = CONSTRAINT CHECKS
/SUPPRESS= ELABORATION CHECKS
/SUPPRESS = STACKChECK-S
/SUPPRESS=ALL
/NOSUPPRESS (D)

/SUPPRESS= CONSTRAINT CHECKS causes the PSS Ada
Compiler to eliminate all checs performed to test for constraint
errors. This compiler option is used where higher execution
performance is necessary.

/SUPPRESS= ELABORATION CHECKS causes the PSS Ada
Compiler to eliminate all check-performed during elaboration.
This compiler option is used where elaboration order is
specified by the user.

/SUPPRESS = STACK CHECKS causes the PSS Ada Compiler
to eliminate all check:Ton the run-time stack. This compiler
option is used where higher execution performance is necessary.

/SUPPRESS=ALL has the same effect as combining every
suppress option. It has the same effect as the expression--

/SUPPRESS= (CONSTRAINT-CHECKS, ELABORATIONCHECKS,
STACKCHECKS)

-47-
DTX-3000

The PSS Ada Compiler

